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ABSTRACT 
 
SLX, Simulation Language with Extensibility, is the 
newest member in Wolverine Software’s family of 
simulation and animation software. SLX features unique  
extensibility mechanisms that allow users to tailor and 
extend SLX’s modeling capabilities. There are two 
advantages to extensibility. First, it ensures virtually 
unlimited adaptability. You’ll never get “stuck” with a 
problem you can’t solve with SLX. Second, extensibility 
allows packaging the use of highly efficient, low-level 
primitives in such a way that cumbersome details are 
hidden. Problems are described using nouns and verbs 
appropriate to the application. The tools provided for 
extending SLX include many of the tools used to develop 
SLX itself; however, these tools are by no means intended 
to be used exclusively by language developers. They are 
“user-level” tools that can be mastered by anyone. This 
paper presents an overview of SLX. Earlier papers 
(Henriksen 1997, 1998) presented the development of a 
conveyor modeling package in SLX, and example of how 
SLX has been coupled with other software, respectively. 

1  INTRODUCTION 

The most important characteristic of SLX is its layered, 
inverted pyramidal architecture, shown in Figure 1. 
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Application-Specific Packages 
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C-Like Kernel 

 
 

Figure 1:  The SLX Pyramid 
 

Traditional language-based simulation tools fall in the 
middle of the SLX pyramidal hierarchy. As is evident in 
Figure 1, SLX’s layers extend both below and above the 
focus of traditional simulation languages. 

The bottom layer of SLX is a C-like kernel language. 
Constructs of the C language which are error-prone or 
intended primarily for systems programmers were 
excluded from or restricted in the SLX kernel. 
Conversely, discrete event simulation primitives such as  
parallelism, scheduling, and synchronization, not found in 
C, were added to the SLX kernel, using C-like syntax. 
SLX’s kernel is a small, but very powerful language for 
constructing simulations at a “nuts-and-bolts” level. It 
provides the underlying support for higher levels in the 
pyramid. 

The top layers of SLX extend above the focus of 
traditional simulation languages. SLX’s extensibility 
mechanisms can be used to develop dialects of SLX in 
which nouns and verbs are application-specific. 

The efficacy of SLX’s layered approach is hinges on 
four key factors: 

 
A. SLX’s layers are well-conceived. In each layer, we 

have taken a minimalist-generalist approach, providing 
only those capabilities that are absolutely necessary, but 
implementing them in as general a manner as possible. 
Consider the design of SLX’s kernel. We went to lengths 
to minimize the “footprint” of the kernel. As a result of 
our approach, the SLX kernel is surprisingly small 
collection of precisely-defined, very general primitives 
which can support a wide variety of higher-level modeling 
approaches. For example, SLX’s kernel-level wait until 
statement allows easy specification of state-based events, 
e.g., “wait until State A and State B or State C.” State-
based events are the foundation of a variety of world 
views, e.g., transaction flow, process interaction, activity 
scan, and Petri nets.  

  



B. SLX’s layers are properly separated. Many  
modeling tools provide multiple layers, but often these 
tools exhibit wide gulfs between their layers, leading to 
jarring transitions as one moves from layer to layer. For 
example, a modeling package might provide flowchart-
oriented building blocks as its primary modeling 
paradigm, but also provide for “dropping down” into 
procedural languages such as C or Visual Basic. The 
problem with this approach is that there are only two 
layers, and they’re too far apart. To be able to add C or 
Visual Basic extensions to such software, one must first 
become familiar with many details of the software’s 
implementation. Even worse, virtually none of the error 
checking and other safeguards provided at the higher level 
are available in C or Visual Basic. SLX users almost never 
find it necessary to drop down to a lower-level, more 
powerful language, because the SLX kernel language has 
an expressiveness approaching that of C. In addition, the 
SLX kernel language includes complete checking to 
prevent “shoot yourself in the foot” errors such as 
referencing beyond the end of an array and using invalid 
pointer variables, both of which are all too familiar to C 
programmers. 

   
C. SLX’s mechanisms for moving from layer to layer 

are very powerful. These mechanisms are abstraction 
mechanisms. Higher levels provide more abstract 
descriptions than a lower levels; i.e., lower-level 
implementation details are hidden at the upper levels. SLX 
provides both data and procedural abstraction 
mechanisms. Like C, SLX provides the ability to define 
new data types, and to build objects which are 
aggregations of data types. The procedural abstraction 
mechanisms of SLX, which go well beyond C, are 
extremely powerful. SLX provides a macro language and a 
statement definition capability which allows introduction 
of new statements into SLX. (The SLX-hosted 
implementation of GPSS/H makes heavy use of the 
statement definition feature.) The definitions of macros 
and statements can contain extensive logic, including 
conditional expansion, looping, optional arguments, lists 
of arguments, etc. In fact, such definitions are actually 
compiled by SLX, allowing use of virtually all kernel-
level statements. Macros and statement definitions offer 
far more than simple text substitution. 

 
D. SLX has excellent mechanisms for coupling SLX 

programs with other software. For example, if you have a 
collection of C functions you’d like to call from SLX, all 
you need to do is (1) place them into a Windows  Dynamic 
Link Library (DLL), and (2) provide prototypes which tell 
SLX about the arguments and values returned by your 
functions. SLX can automatically generate C/C++ header 
files (.h files) which define SLX objects using C/C++ 

syntax. Thus the most error-prone step of establishing a 
cross-language interface, achieving exact agree-ment on 
the data structures used, has been automated. SLX’s DLL 
interface is described in Section 4.1. 

(Henriksen 1997) discusses how SLX was used to build 
a software package for modeling conveyor systems. (Brill 
and Whitney 1997) presents an example of the use of SLX 
for datailed traffic modeling. Both references provide 
examples of the exploitation of SLX’s layered 
architecture. 

In the sections which follow, SLX’s extensibility 
mechanisms are illustrated; selected features of the SLX 
kernel are presented; and examples are presented which 
describe the coupling of SLX and other software. Finally, 
the ramifications of SLX on the teaching of simulation are 
discussed. 

2  EXTENSIBILITY FEATURES 

SLX is an extensible platform on which a wide variety of 
higher level simulation applications can be built. In this 
section we provide an overview of how the extensibility 
mechanisms work. 

2.1  Unbounded, Executable Compiler Extensions 

In a traditional language compiler, elements of a program 
(referred to below as modules) are translated into some 
form (referred to below as object code) which can be 
executed by a computer or interpreted by an interpreter 
program. The architecture of a traditional compiler is 
shown in Figure 2. 
 
      Source Code              Object Code 
 
        Module A         A’ 
           Traditional 
        Module B         B’ 
             Compiler 
        Module C         C’ 
 

Figure 2:  Traditional Compiler Architecture 
 

In SLX, several source language constructs can be used to 
extend the SLX compiler. This architecture is shown in 
Figure 3. 

When the SLX compiler encounters the definition of a 
compiler extension, it sets aside its current work and 
processes the extension in its entirety. When the compiler 
resumes its work, the compiled extension is available for 
use throughout the rest of the compilation. In Figure 3, 
Module C can make use of extensions defined in 
Extension B. This process can be used repeatedly; i.e., the 



extended compiler can be further extended, without 
bound. 

 
      Source Code              Object Code 
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Figure 3:  SLX Compiler Architecture 

2.2  SLX’s Statement Definition Facility 

One of the most commonly used forms of SLX 
compiler extensions is the SLX statement definition 
facility. This facility allows the introduction of new 
statements into the SLX language. Such statements are 
similar to macros in traditional programming languages, 
except that they operate at the statement level, rather than 
at the expression level, as is commonly the case. 

There are four major components of a statement 
definition: 
 

A. a prototype which specifies the syntax of the 
statement (informally, “how it looks”); 

B. optional logic and looping within the definition, 
responding to the presence, absence, and other 
characteristics of statement components; and 

C. one or more expand statements which inject 
“generated” text into the source stream seen by the 
SLX compiler. 

D. optional diagnose statements which issue mean-
ingful messages when errors in statement usage are 
made. 

 
SLX statement prototypes are described using a meta-

language which permits specification of the following 
kinds of statement components: 

 
A. User-supplied expressions 
B. User-defined keywords 
C. Optional components 
D. Repeated components; e.g., lists of items 
E. Punctuation characters 
 
Perhaps the most striking feature of all of SLX is the 

vehicle by which the logic, looping, expansion, and 
issuance of diagnostics are expressed. Most languages 
which have macros employ special sublanguages for 
defining macros. Typically such sublanguages are radically 
different from, and weaker in expressive power than, their 

host languages. For example, #if, #else, and #endif in the 
C language offer very weak capabilities for conditional 
expansion of macros, and their syntax differs from that of 
C itself. In SLX, there is no separate sublanguage used for 
statement definitions; rather, the SLX language itself is 
used. The only limitation is that simulation constructs 
such as time delays, fork, and wait until, which have no 
meaningful interpretation during program compilation, 
cannot be used. 

The ability to use (almost) all of the SLX language in 
statement definitions permits tremendous flexibility and 
complexity in statement definitions. For example, a 
statement definition can read information from a file and 
store the information in user-defined, compile-time data 
structures which are interrogated and manipulated by other 
statement definitions. 

In addition to statement definitions, SLX supports more 
traditional macros and precursor modules. Precursor 
modules are “large” SLX compiler extensions. They are 
not limited to just macros and statement definitions; 
rather, they can contain a host of functions and data which 
are to be made available at compile-time, run-time, or 
both. Finally, note that all three forms of SLX compiler 
extensions (statement definitions, macros, and precursor 
modules) are compiled into executable machine 
instructions by SLX. Thus, SLX fulfills the promise of 
unbounded, executable user extension of SLX itself. 

3  SLX KERNEL FEATURES 

The number of primitives required to support simulation 
is surprisingly small. Implementing some of these 
primitives in a general form, however, can be very 
difficult. Features such as SLX’s generalized wait until 
are extremely difficult to implement. Not surprisingly, 
this feature has rarely appeared in other simulation 
software. Paradoxically, some of the features which are 
the most difficult to implement are the most easily 
understood. In the remainder of this section, we will 
present some representative features, to illustrate the 
functionality, ease-of-of-use, and ease-of-learning of 
SLX.  

3.1  Objects and Pointers to Objects 

In SLX, two kinds of objects are used to represent 
components of systems being modeled. Passive objects 
are used for modeling entities which have no “executable” 
behavior. In a model of a factory, widgets being produced 
would be modeled as passive objects, since they have no 
self-determined, executable behavior. Their behavior 
results from being acted upon by other objects. (For those 
readers familiar with C, passive objects are very much like 
C structs.)  Active objects have executable, at least 



partially self-determined behavior patterns. In a model of 
a factory, a foreman would be modeled as an active object. 

Some entities can be modeled either as active objects 
or passive objects. For example, a simple server with a 
FIFO queue can be modeled as a passive object. Its 
behavior depends solely on the requests made for it by 
active objects. (This is the way Facilities work in 
GPSS/H.) For more complicated servers, an active object 
may be more appropriate. Consider a butcher in a model 
of a supermarket. In a simple queueing model, the butcher 
can be represented as a passive object, responding to 
requests for service one customer at a time. In a more 
realistic model, a butcher would have a more complex 
behavior pattern, cycling through activities of cutting 
meat, arranging products in refrigerators, interacting with 
the deli department, taking breaks, etc. Such behavior 
would require modeling the butcher as an active object. 

Objects are created by using the new operator, which 
returns a pointer to the newly created object. When an 
activate operator is applied to a pointer to an object, a 
puck (defined in Section 3.2) is created for the object and 
placed on the Current Events Chain; i.e., the puck is placed 
in a ready-to-execute state. The new and activate operators 
are almost always used in a single statement: 

 
activate new butcher; 
 

The manipulation of pucks is the basic mechanism by 
which a collection of objects experiences events over 
time. By rapidly switching from puck to puck, the SLX 
simulator creates the illusion of parallelism among the 
activities of the objects to which the pucks are attached. 
Scheduled time delays, e.g., service times, and state-based 
delays, e.g., waiting for a server to become available, are 
operations performed on pucks.  

3.2  What’s a Puck? 

The original version of GPSS introduced the transac-tion-
flow modeling world-view in 1962. In the transaction-
flow world view, attention is focused on units of traffic, 
called transactions, which flow through the block diagram 
representation of a system, competing for system 
resources. In the 36-year period since GPSS was 
introduced, a large number of other languages have 
implemented variations of the transaction-flow world 
view. Implementation of this world view, and the 
terminology used to describe it vary widely (See (Schriber 
and Brunner 1997)). 

In traditional transaction-flow languages, a transaction 
contains two types of data, user-defined data particular to 
the unit of traffic, and “scheduling” data, needed to keep 
track of the state and location (current block in the block 
diagram) of the unit of traffic in a model. Figure 4 

illustrates this architecture. In a GPSS model of a 
supermarket, a transaction representing a shopper would 
have attributes such as probabilities of visiting various 
departments, e.g., the deli, expected number of items to be 
purchased in each department, etc. Scheduling data would 
include priority, next scheduled event time, next model 
statement to be executed, etc. Scheduling data includes 
values which can be modified by a program, e.g., 
transaction priority, and other values which are “internal” 
values maintained by run-time support routines for the 
simulation language. All user-defined transaction data can 
be both read and written by user code. 

In SLX the functionality of a transaction is broken 
down into independent lower-level components, and there 
are no transactions, per se. The role of a transaction’s 
user-defined data is played by an instance of an SLX user-
defined object class. The role of a transaction’s 
scheduling data is played by an SLX puck. Each SLX 
object created is an instance of its object class and has its 
own copy of the object class’s data. The statements which 
are executed by the object are contained in the actions 
property of the object’s class and any lower-level 
procedures invoked by the actions property. In SLX, it is 
possible to have more than one puck for a given object. An 
object instance for which there are two pucks is shown in 
Figure 5. 

3.3  Inter-Object and Intra-Object Parallelism 

In SLX, parallelism can be modeled in two ways: as 
interactions among objects (inter-object parallelism) and 
as multiple actions performed on behalf of the same 
object (intra-object parallelism.) Inter-object parallelism, 
in which there is a 1:1 relationship between objects and 
pucks, is functionally equivalent to transaction flow. Intra-
object parallelism is achieved by creating more than one 
puck for an active object. This is accomplished by means 
of a fork statement. Suppose that in developing a model of 
a factory, we need to model a complicated machine which 
is capable of performing three operations simultaneously. 
Some components of the machine are common to all 
three operations. The data describing such components 
must be easily accessible within the portions of the model 
for each of the three operations. Figure 6 shows how an 
active object can be used to model such a machine, using 
fork statements. 

Each fork statement creates a new puck for the machine 
object. The offspring puck is placed on the Current Events 
Chain, poised to execute the actions within the braces 
(“{…}”) following the fork statement. The parent puck 
continues its execution with the next statement. After the 
second fork is executed, the machine object has three 
pucks, each of which has direct access to data common to 
the entire machine, and each of which is independently 



scheduled. Thus our active machine can do three things at 
once. 

Most transaction-flow simulation languages offer only 
inter-object parallelism. Most also offer some form of 
“cloning” operation which is superficially similar to 
SLX’s fork statement. When such an operation is 
performed, a new transaction is created. The new 
transaction, by definition, has its own scheduling data, and 
usually the user-defined attributes of the parent 
transaction are copied into the offspring (clone). A new 
transaction is another complete instance of Figure 4. 
SLX’s fork statement creates a new puck (scheduling data 
only) which shares the user-defined attributes with other 
pucks, as shown in Figure 5. 
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Figure 4:  Traditional Transaction Architecture 
 
 
 
       Puck 1       Object Instance Data  
 
 
   class x 
      { 
       Puck 2     actions 
         { 
         statement 
         statement 
         statement 
         } 
      }; 

 
Figure 5: An Active Object With Two Pucks 

class machine 
 { 
 “Declarations for variables local to the machine” 
 
 actions 
  { 
  fork 
   { 
   “actions for operation 1” 
   } 
 
  fork 
   { 
   “actions for operation 2” 
   } 
 
  “actions for operation 3” 
  } 
 }; 
 

Figure 6:  Intra-Object Parallelism Using Forks 
 
If a language has only a transaction-cloning verb and no 

fork verb, modeling system components such as the 
complicated machine discussed above is much more 
difficult, although certainly not impossible. Consider, for 
example, GPSS/H’s SPLIT block, which creates a clone of 
an entire transaction. We could use SPLIT blocks to 
model our machine. The difficulty arises in choosing 
where to store the data that must be shared by all three 
transactions. If multiple GPSS/H transactions need to 
share a single copy of data describing a component of a 
system, the data must be stored in global variables. (In 
GPSS/H, transactions can easily change their own 
attributes, but changing the attributes of other transactions 
is difficult. Thus, storing the shared data in any given 
transaction is impractical.) If only one such machine 
exists, storing the shared data in global variables is easy. If 
there is more than one such machine, separate collections 
of shared global variables must be used, one collection for 
each such machine. If the collection of machines does not 
change during model execution, the shared data can be 
statically allocated. However, if the collection of 
machines changes during model execution, some form of 
dynamic data management must be implemented by the 
modeler, since GPSS/H global variables are statically 
allocated at the start of model execution; i.e., they cannot 
be created and destroyed during model execution. 

The fork statement is an extremely handy modeling 
tool. In complex modeling situations, intra-object 
parallelism can be indispensable. The use of multiple 
pucks offers easy shared access to object attributes 
among all the pucks which belong to any given instance of 



the object, while preventing access by pucks which belong 
to a different instance. 

3.4  SLX’s Generalized Wait Until 

As units of traffic flow through a model, they are subject 
to two forms of delay, scheduled delays, and state-based 
delays. In SLX, state-based delays are modeled using 
control variables and the wait until statement. The 
keyword “control” is used as a prefix on SLX variable 
declarations: 

 
control integer count; 
control boolean repair_completed; 

 
 The “control” keyword tells the SLX compiler that at 

each point at which the value of the control variable is 
changed, a check must be made to see whether any pucks 
in the model are currently waiting for the variable to attain 
a particular value or range of values. Such waits are 
described using the wait until statement: 

 
wait until (count > 10); 
wait until (repair_completed); 

 
Compound conditions are allowed as well: 

 
wait until (count >= 10  

or repair_completed 
and not repairman_busy); 

 
SLX also supports indefinite (user-managed) waits. Three 
steps are required to implement an indefinite wait. First, 
the puck which is going to wait must be made accessible 
to other pucks. This is usually done by placing the puck 
into a set. Second, the puck executes a wait statement with 
no “until” clause. Finally, at a subsequent point in 
simulated time, another puck executes a reactivate 
statement to reactivate the waiting puck. 

Wait until expressions can include a time-based 
condition.  

 
optimistic_event_time = “some expression” 
 
wait until  (time  == optimistic_event_time 
   or “some other condtion”); 

4  SLX AS A COMPONENT OF YOUR WORLD 

Although SLX is extremely powerful and flexible, there 
are situations in which it is convenient to use other 
software tools in conjunction with SLX. For example, if 
you have a pre-existing collection of C functions, it may 
be very handy to be able to call them from SLX. The 

remainder of this section provides examples of how SLX 
can be integrated with the other tools in your world. 

4.1  SLX’s DLL Interface 

SLX has very powerful facilities for calling C/C++ 
functions which are contained in a DLL (dynamic link 
library). To call functions in a DLL, you must supply to 
SLX a function prototype which defines the arguments (if 
any) of each function, the values returned (if any), and the 
name of the DLL file. The SLX development environment 
has a menu item which can be clicked to generate a 
C/C++-compatible .h file which maps all SLX data passed 
to and from DLL functions into C syntax. SLX objects 
contain hidden elements which are used for error 
detection, debugging and other internal bookkeeping 
functions. If an SLX object is to be manipulated by a C 
function, the hidden information must be taken into 
account when constructing an analagous C/C++ struct 
definition. Accordingly, object elements for which there 
is a direct counterpart in C/C++ are described using 
straightforward declarations in a generated .h file, and 
hidden elements are declared as arrays of bytes with the 
dimension chosen to “pad” the C/C++ struct to achieve 
agreement with SLX. 

When SLX detects the first call of any function in a 
given DLL, it checks to see if the DLL has a function 
named “connect.” If so, this function is called first, and 
SLX passes it a pointer to a vector of pointers to callback 
functions inside SLX. These functions can be used to 
perform functions that are risky or impossible to perform 
from C/C++ subsequently called DLL functions. At the 
completion of execution, each DLL used is interrogated 
for the existence of a “disconnect” function. Any such 
functions found are called by SLX prior to SLX program 
termination. This allows DLLs to perform any final 
“cleanup” operations, e.g., closing open files. 

4.2  SLX-Proof Interface 

Wolverine Software has developed an interface between 
SLX and Proof Animation (Henriksen 1998) using SLX’s 
statement definition facility. Proof requires an input 
stream of ASCII commands that create and destroy 
objects on the screen, move them, change their colors, 
etc. A small, but powerful collection of commands is used 
for this purpose. SLX statements have been defined for 
generating the commonly used Proof commands and 
command options. The syntax of the SLX statements 
matches that of the corresponding Proof commands. For 
example, to generate a 
 
 place 27 on loop 
 



Proof command, one might write 
 
 PA_place objectID on “loop”; 
 
In the example shown above, “27” and “loop” are variable 
components of the Proof place on command. The SLX 
code supplies “27” as the value of a variable named 
objectID and supplies “loop” as a string constant. 

The current version of the SLX-Proof interface writes 
Proof command streams to files. A DLL version of Proof 
is under development. When this version is completed, the 
statement definitions in the SLX-Proof interface will be 
augmented to allow the transmission of commands 
directly to Proof.dll without using files. This will make it 
possible to run a simulation and animation concurrently. 

A third party has developed an SLX package that is 
capable of reading entire Proof layout files, storing them 
in SLX data structures, and rewriting the layout files. Thus 
geometric characteristics of layouts drawn or modified 
using Proof are accessible to SLX programs. In addition, 
Proof layout files can be modified by an SLX program. 

4.3  SLX-Prime Interface 

Prime (Wagner and Wilson 1997) is a software package 
for fitting Bézier-curve-based probability distributions to 
data observations. Bézier curves can be fitted to data using 
a variety of automated algorithms and by visual 
manipulation of the control points which define the Bézier 
curve. Thus it is possible to take a fitted curve and move 
the mass of the probability distribution around. For 
example, one might feel that in a real system, data might 
be a little more skewed to the right than collected 
experimental data would suggest. Visual manipulation of 
the distribution makes this easy to do, provided that the 
resultant curve can be easily incorporated into a random 
variate generator in a simulation package. 

The output of Prime is a collection of Bézier control 
points stored in a file in a straightforward ASCII format. In 
cooperation with the author of Prime, Wolverine Software 
developed several statement definitions which allow 
direct incorporation of Prime-generated curves into SLX 
models. The “Bézier_data” statement reads a Prime-
generated file (at compile time!) and deposits the defined 
control points into an SLX object. This object can be 
subsequently used for generating random variates from the 
fitted distribution. 

SLX and Prime work very well together, The initial 
integration of the two packages was accomplished in 
under 24 hours. After the initial integration, a highly tuned 
variate generator was written in assembly language, to 
achieve maximum efficiency in variate generation. This 
required another day’s work. 

4.4  SLX-HLA Interface 

SLX’s DLL interface has been used to connect SLX 
models with the run-time infrastructure (RTI) of HLA 
(DoD 1997), DoD’s High Level Architecture for distrib-
uted simulations (Strassburger, Schulze, Klein, and 
Henriksen 1998). Integration was accomplished by 
building C++ wrapper functions which sit between SLX 
and the RTI. The integration of SLX and HLA is highly 
synergistic. It brings to SLX an architecture which 
promises to achieve widespread adoption for distributed, 
interoperable simulations. For people who know HLA and 
want to develop such simulations, SLX provides a 
powerful alternative to developing simulations from the 
ground up in a high-level language such as C++ or ADA. 

5  TEACHING SLX 

The architecture of SLX has potentially profound 
implications for teaching simulation. The usual approach 
to teaching simulation is to “dive in” at an intermediate 
level by providing an easily understood collection of 
building blocks and exploring some well-motivated 
examples. Students of simulation who tackle real-world 
applications sooner or later reach a point at which they 
have to go back and build a foundation under their 
knowledge; i.e., they have to learn how things really work 
(Schriber and Brunner 1997). Depending on exactly when 
the foundation-building process takes place, students may 
have already developed usage patterns which ignore some 
of a language’s capabilities and misuse others. For 
example, self-taught users of GPSS/H will almost always 
favor an “active-object, passive-server” world-view, even 
though the language is quite capable of expressing an 
“active-server, passive object” world-view. For users of 
very high-level simulation packages, especially 
graphically based model-builders, the foundation-building 
may never take place. Whether this is good or bad is a 
matter of religion. Advocates of the very high-level 
approach think this is good, while their more conservative 
counterparts are appalled by the danger of doing too much 
with too little knowledge. 

In SLX, the number of kernel constructs which directly 
support simulation is very small. Depending on what one 
counts as a simulation feature, the number ranges from 
roughly 8 to 12. Our experience with GPSS/H has proven 
that this is a small enough number of building blocks for 
beginners to readily absorb. For example, we have seen 
many times that so-called “9-block GPSS/H” is easily 
mastered and quite powerful. 

However, even with 9-block GPSS/H, students quickly 
reach a point at which foundation-building is necessary. 
With SLX, a bottom-up approach is feasible. For example, 
consider modeling a barbershop, a traditional introductory 



one-line, single-server queuing model. In a beginner’s 
model, the barbershop runs from 9:00-5:00, at which time 
it summarily shuts down, ignoring the customer (if any) 
who is in the barber chair at that time and ignoring 
customers (if any) in the queue. In a second model, more 
realistic shutdown conditions can be implemented. At 
5:00 the door to the shop is closed, and the barber does 
not leave until the current customer and all customers in 
the queue at 5:00 have been served. In SLX, this condition 
is easily expressed as a compound “wait until” condition, 
e.g., “wait until (time >= 5:00 and queue empty and server 
idle).”  Thus, SLX’s wait until feature is well-motivated 
and easily understood at a very early stage of model 
building. In SLX, wait until is the foundation of all forms 
of state-based events. Thus mastery of wait until yields 
enormous benefits. 

SLX kernel-level simulation primitives are exposed, 
i.e., they can be used directly. In most simulation 
software, primitives are bound into impenetrable higher-
level features. For example, in GPSS/H there are at least 
five building blocks which internally utilize the equivalent 
of wait until. Some of these blocks have many external 
variations. Thus, students of GPSS/H must master the 
external variations and learn how the underlying wait until 
mechanism works. In SLX, it’s easier to learn the general 
mechanism first. Wait until is both an SLX primitive and a 
fundamental modeling concept. Thus, by teaching/learning 
wait until, we can kill two birds with one stone. 

The hierarchical architecture of SLX is mirrored by 
Windows-based tools in the SLX model development / 
debugging environment. Windows can be opened to 
explore every aspect of puck management. Students of 
SLX have the ability to see how SLX works. 

5  CONCLUSIONS 

SLX is a well-conceived, layered simulation system. 
Users of the upper layers can ignore lower layers. 
However, if their requirements are not met at a given 
level, they can move down one or more levels, without 
exerting extraordinary effort and without losing 
protection against  potentially disastrous errors. 
Developers, who are used to working down among the 
lower layers, have at their disposal powerful extensibility 
mechanisms for building higher layers for use by 
themselves or others. SLX has been used in a variety of 
very large, complex applications. Its extensibility 
mechanisms have been heavily exploited. SLX is easily 
integrated with other simulation tools, including HLA. If 
you’re teaching or learning simulation, or developing 
simulations, SLX can be an invaluable component of your 
world. SLX stretches the boundaries of simulation 
software. 
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