
SLX - THE X IS FOR EXTENSIBILITY

James O. Henriksen

Wolverine Software Corporation
2111 Eisenhower Avenue, Suite 404
Alexandria, VA 22314-4679, U.S.A.

ABSTRACT

SLX, Simulation Language with Extensibility, is the
newest member in Wolverine Software’s family of
simulation and animation software. SLX features unique
extensibility mechanisms that allow users to tailor and
extend SLX’s modeling capabilities. There are two
advantages to extensibility. First, it ensures virtually
unlimited adaptability. You’ll never get “stuck” with a
problem you can’t solve with SLX. Second, extensibility
allows packaging the use of highly efficient, low-level
primitives in such a way that cumbersome details are
hidden. Problems are described using nouns and verbs
appropriate to the application. The tools provided for
extending SLX include many of the tools used to develop
SLX itself; however, these tools are by no means intended
to be used exclusively by language developers. They are
“user-level” tools that can be mastered by anyone. This
paper presents an overview of SLX. Earlier papers
(Henriksen 1997, 1998) presented the development of a
conveyor modeling package in SLX, and example of how
SLX has been coupled with other software, respectively.

1 INTRODUCTION

The most important characteristic of SLX is its layered,
inverted pyramidal architecture, shown in Figure 1.

Packages for Non-Simulationists

Application-Specific Packages

GPSS/H-Like Languages

Kernel Extensions

C-Like Kernel

Figure 1: The SLX Pyramid

Traditional language-based simulation tools fall in the
middle of the SLX pyramidal hierarchy. As is evident in
Figure 1, SLX’s layers extend both below and above the
focus of traditional simulation languages.

The bottom layer of SLX is a C-like kernel language.
Constructs of the C language which are error-prone or
intended primarily for systems programmers were
excluded from or restricted in the SLX kernel.
Conversely, discrete event simulation primitives such as
parallelism, scheduling, and synchronization, not found in
C, were added to the SLX kernel, using C-like syntax.
SLX’s kernel is a small, but very powerful language for
constructing simulations at a “nuts-and-bolts” level. It
provides the underlying support for higher levels in the
pyramid.

The top layers of SLX extend above the focus of
traditional simulation languages. SLX’s extensibility
mechanisms can be used to develop dialects of SLX in
which nouns and verbs are application-specific.

The efficacy of SLX’s layered approach is hinges on
four key factors:

A. SLX’s layers are well-conceived. In each layer, we

have taken a minimalist-generalist approach, providing
only those capabilities that are absolutely necessary, but
implementing them in as general a manner as possible.
Consider the design of SLX’s kernel. We went to lengths
to minimize the “footprint” of the kernel. As a result of
our approach, the SLX kernel is surprisingly small
collection of precisely-defined, very general primitives
which can support a wide variety of higher-level modeling
approaches. For example, SLX’s kernel-level wait until
statement allows easy specification of state-based events,
e.g., “wait until State A and State B or State C.” State-
based events are the foundation of a variety of world
views, e.g., transaction flow, process interaction, activity
scan, and Petri nets.

B. SLX’s layers are properly separated. Many
modeling tools provide multiple layers, but often these
tools exhibit wide gulfs between their layers, leading to
jarring transitions as one moves from layer to layer. For
example, a modeling package might provide flowchart-
oriented building blocks as its primary modeling
paradigm, but also provide for “dropping down” into
procedural languages such as C or Visual Basic. The
problem with this approach is that there are only two
layers, and they’re too far apart. To be able to add C or
Visual Basic extensions to such software, one must first
become familiar with many details of the software’s
implementation. Even worse, virtually none of the error
checking and other safeguards provided at the higher level
are available in C or Visual Basic. SLX users almost never
find it necessary to drop down to a lower-level, more
powerful language, because the SLX kernel language has
an expressiveness approaching that of C. In addition, the
SLX kernel language includes complete checking to
prevent “shoot yourself in the foot” errors such as
referencing beyond the end of an array and using invalid
pointer variables, both of which are all too familiar to C
programmers.

C. SLX’s mechanisms for moving from layer to layer

are very powerful. These mechanisms are abstraction
mechanisms. Higher levels provide more abstract
descriptions than a lower levels; i.e., lower-level
implementation details are hidden at the upper levels. SLX
provides both data and procedural abstraction
mechanisms. Like C, SLX provides the ability to define
new data types, and to build objects which are
aggregations of data types. The procedural abstraction
mechanisms of SLX, which go well beyond C, are
extremely powerful. SLX provides a macro language and a
statement definition capability which allows introduction
of new statements into SLX. (The SLX-hosted
implementation of GPSS/H makes heavy use of the
statement definition feature.) The definitions of macros
and statements can contain extensive logic, including
conditional expansion, looping, optional arguments, lists
of arguments, etc. In fact, such definitions are actually
compiled by SLX, allowing use of virtually all kernel-
level statements. Macros and statement definitions offer
far more than simple text substitution.

D. SLX has excellent mechanisms for coupling SLX

programs with other software. For example, if you have a
collection of C functions you’d like to call from SLX, all
you need to do is (1) place them into a Windows Dynamic
Link Library (DLL), and (2) provide prototypes which tell
SLX about the arguments and values returned by your
functions. SLX can automatically generate C/C++ header
files (.h files) which define SLX objects using C/C++

syntax. Thus the most error-prone step of establishing a
cross-language interface, achieving exact agree-ment on
the data structures used, has been automated. SLX’s DLL
interface is described in Section 4.1.

(Henriksen 1997) discusses how SLX was used to build
a software package for modeling conveyor systems. (Brill
and Whitney 1997) presents an example of the use of SLX
for datailed traffic modeling. Both references provide
examples of the exploitation of SLX’s layered
architecture.

In the sections which follow, SLX’s extensibility
mechanisms are illustrated; selected features of the SLX
kernel are presented; and examples are presented which
describe the coupling of SLX and other software. Finally,
the ramifications of SLX on the teaching of simulation are
discussed.

2 EXTENSIBILITY FEATURES

SLX is an extensible platform on which a wide variety of
higher level simulation applications can be built. In this
section we provide an overview of how the extensibility
mechanisms work.

2.1 Unbounded, Executable Compiler Extensions

In a traditional language compiler, elements of a program
(referred to below as modules) are translated into some
form (referred to below as object code) which can be
executed by a computer or interpreted by an interpreter
program. The architecture of a traditional compiler is
shown in Figure 2.

 Source Code Object Code

 Module A A’
 Traditional
 Module B B’
 Compiler
 Module C C’

Figure 2: Traditional Compiler Architecture

In SLX, several source language constructs can be used to
extend the SLX compiler. This architecture is shown in
Figure 3.

When the SLX compiler encounters the definition of a
compiler extension, it sets aside its current work and
processes the extension in its entirety. When the compiler
resumes its work, the compiled extension is available for
use throughout the rest of the compilation. In Figure 3,
Module C can make use of extensions defined in
Extension B. This process can be used repeatedly; i.e., the

extended compiler can be further extended, without
bound.

 Source Code Object Code

 Module A A’
 SLX
 Extension B Compiler

 B’
 Module C C’

Figure 3: SLX Compiler Architecture

2.2 SLX’s Statement Definition Facility

One of the most commonly used forms of SLX
compiler extensions is the SLX statement definition
facility. This facility allows the introduction of new
statements into the SLX language. Such statements are
similar to macros in traditional programming languages,
except that they operate at the statement level, rather than
at the expression level, as is commonly the case.

There are four major components of a statement
definition:

A. a prototype which specifies the syntax of the
statement (informally, “how it looks”);

B. optional logic and looping within the definition,
responding to the presence, absence, and other
characteristics of statement components; and

C. one or more expand statements which inject
“generated” text into the source stream seen by the
SLX compiler.

D. optional diagnose statements which issue mean-
ingful messages when errors in statement usage are
made.

SLX statement prototypes are described using a meta-

language which permits specification of the following
kinds of statement components:

A. User-supplied expressions
B. User-defined keywords
C. Optional components
D. Repeated components; e.g., lists of items
E. Punctuation characters

Perhaps the most striking feature of all of SLX is the

vehicle by which the logic, looping, expansion, and
issuance of diagnostics are expressed. Most languages
which have macros employ special sublanguages for
defining macros. Typically such sublanguages are radically
different from, and weaker in expressive power than, their

host languages. For example, #if, #else, and #endif in the
C language offer very weak capabilities for conditional
expansion of macros, and their syntax differs from that of
C itself. In SLX, there is no separate sublanguage used for
statement definitions; rather, the SLX language itself is
used. The only limitation is that simulation constructs
such as time delays, fork, and wait until, which have no
meaningful interpretation during program compilation,
cannot be used.

The ability to use (almost) all of the SLX language in
statement definitions permits tremendous flexibility and
complexity in statement definitions. For example, a
statement definition can read information from a file and
store the information in user-defined, compile-time data
structures which are interrogated and manipulated by other
statement definitions.

In addition to statement definitions, SLX supports more
traditional macros and precursor modules. Precursor
modules are “large” SLX compiler extensions. They are
not limited to just macros and statement definitions;
rather, they can contain a host of functions and data which
are to be made available at compile-time, run-time, or
both. Finally, note that all three forms of SLX compiler
extensions (statement definitions, macros, and precursor
modules) are compiled into executable machine
instructions by SLX. Thus, SLX fulfills the promise of
unbounded, executable user extension of SLX itself.

3 SLX KERNEL FEATURES

The number of primitives required to support simulation
is surprisingly small. Implementing some of these
primitives in a general form, however, can be very
difficult. Features such as SLX’s generalized wait until
are extremely difficult to implement. Not surprisingly,
this feature has rarely appeared in other simulation
software. Paradoxically, some of the features which are
the most difficult to implement are the most easily
understood. In the remainder of this section, we will
present some representative features, to illustrate the
functionality, ease-of-of-use, and ease-of-learning of
SLX.

3.1 Objects and Pointers to Objects

In SLX, two kinds of objects are used to represent
components of systems being modeled. Passive objects
are used for modeling entities which have no “executable”
behavior. In a model of a factory, widgets being produced
would be modeled as passive objects, since they have no
self-determined, executable behavior. Their behavior
results from being acted upon by other objects. (For those
readers familiar with C, passive objects are very much like
C structs.) Active objects have executable, at least

partially self-determined behavior patterns. In a model of
a factory, a foreman would be modeled as an active object.

Some entities can be modeled either as active objects
or passive objects. For example, a simple server with a
FIFO queue can be modeled as a passive object. Its
behavior depends solely on the requests made for it by
active objects. (This is the way Facilities work in
GPSS/H.) For more complicated servers, an active object
may be more appropriate. Consider a butcher in a model
of a supermarket. In a simple queueing model, the butcher
can be represented as a passive object, responding to
requests for service one customer at a time. In a more
realistic model, a butcher would have a more complex
behavior pattern, cycling through activities of cutting
meat, arranging products in refrigerators, interacting with
the deli department, taking breaks, etc. Such behavior
would require modeling the butcher as an active object.

Objects are created by using the new operator, which
returns a pointer to the newly created object. When an
activate operator is applied to a pointer to an object, a
puck (defined in Section 3.2) is created for the object and
placed on the Current Events Chain; i.e., the puck is placed
in a ready-to-execute state. The new and activate operators
are almost always used in a single statement:

activate new butcher;

The manipulation of pucks is the basic mechanism by
which a collection of objects experiences events over
time. By rapidly switching from puck to puck, the SLX
simulator creates the illusion of parallelism among the
activities of the objects to which the pucks are attached.
Scheduled time delays, e.g., service times, and state-based
delays, e.g., waiting for a server to become available, are
operations performed on pucks.

3.2 What’s a Puck?

The original version of GPSS introduced the transac-tion-
flow modeling world-view in 1962. In the transaction-
flow world view, attention is focused on units of traffic,
called transactions, which flow through the block diagram
representation of a system, competing for system
resources. In the 36-year period since GPSS was
introduced, a large number of other languages have
implemented variations of the transaction-flow world
view. Implementation of this world view, and the
terminology used to describe it vary widely (See (Schriber
and Brunner 1997)).

In traditional transaction-flow languages, a transaction
contains two types of data, user-defined data particular to
the unit of traffic, and “scheduling” data, needed to keep
track of the state and location (current block in the block
diagram) of the unit of traffic in a model. Figure 4

illustrates this architecture. In a GPSS model of a
supermarket, a transaction representing a shopper would
have attributes such as probabilities of visiting various
departments, e.g., the deli, expected number of items to be
purchased in each department, etc. Scheduling data would
include priority, next scheduled event time, next model
statement to be executed, etc. Scheduling data includes
values which can be modified by a program, e.g.,
transaction priority, and other values which are “internal”
values maintained by run-time support routines for the
simulation language. All user-defined transaction data can
be both read and written by user code.

In SLX the functionality of a transaction is broken
down into independent lower-level components, and there
are no transactions, per se. The role of a transaction’s
user-defined data is played by an instance of an SLX user-
defined object class. The role of a transaction’s
scheduling data is played by an SLX puck. Each SLX
object created is an instance of its object class and has its
own copy of the object class’s data. The statements which
are executed by the object are contained in the actions
property of the object’s class and any lower-level
procedures invoked by the actions property. In SLX, it is
possible to have more than one puck for a given object. An
object instance for which there are two pucks is shown in
Figure 5.

3.3 Inter-Object and Intra-Object Parallelism

In SLX, parallelism can be modeled in two ways: as
interactions among objects (inter-object parallelism) and
as multiple actions performed on behalf of the same
object (intra-object parallelism.) Inter-object parallelism,
in which there is a 1:1 relationship between objects and
pucks, is functionally equivalent to transaction flow. Intra-
object parallelism is achieved by creating more than one
puck for an active object. This is accomplished by means
of a fork statement. Suppose that in developing a model of
a factory, we need to model a complicated machine which
is capable of performing three operations simultaneously.
Some components of the machine are common to all
three operations. The data describing such components
must be easily accessible within the portions of the model
for each of the three operations. Figure 6 shows how an
active object can be used to model such a machine, using
fork statements.

Each fork statement creates a new puck for the machine
object. The offspring puck is placed on the Current Events
Chain, poised to execute the actions within the braces
(“{…}”) following the fork statement. The parent puck
continues its execution with the next statement. After the
second fork is executed, the machine object has three
pucks, each of which has direct access to data common to
the entire machine, and each of which is independently

scheduled. Thus our active machine can do three things at
once.

Most transaction-flow simulation languages offer only
inter-object parallelism. Most also offer some form of
“cloning” operation which is superficially similar to
SLX’s fork statement. When such an operation is
performed, a new transaction is created. The new
transaction, by definition, has its own scheduling data, and
usually the user-defined attributes of the parent
transaction are copied into the offspring (clone). A new
transaction is another complete instance of Figure 4.
SLX’s fork statement creates a new puck (scheduling data
only) which shares the user-defined attributes with other
pucks, as shown in Figure 5.

Scheduling
Data

User-Defined
Attribute Data

 Block

 Current Block
 Block

 Block

Figure 4: Traditional Transaction Architecture

 Puck 1 Object Instance Data

 class x
 {
 Puck 2 actions
 {
 statement
 statement
 statement
 }
 };

Figure 5: An Active Object With Two Pucks

class machine
 {
 “Declarations for variables local to the machine”

 actions
 {
 fork
 {
 “actions for operation 1”
 }

 fork
 {
 “actions for operation 2”
 }

 “actions for operation 3”
 }
 };

Figure 6: Intra-Object Parallelism Using Forks

If a language has only a transaction-cloning verb and no

fork verb, modeling system components such as the
complicated machine discussed above is much more
difficult, although certainly not impossible. Consider, for
example, GPSS/H’s SPLIT block, which creates a clone of
an entire transaction. We could use SPLIT blocks to
model our machine. The difficulty arises in choosing
where to store the data that must be shared by all three
transactions. If multiple GPSS/H transactions need to
share a single copy of data describing a component of a
system, the data must be stored in global variables. (In
GPSS/H, transactions can easily change their own
attributes, but changing the attributes of other transactions
is difficult. Thus, storing the shared data in any given
transaction is impractical.) If only one such machine
exists, storing the shared data in global variables is easy. If
there is more than one such machine, separate collections
of shared global variables must be used, one collection for
each such machine. If the collection of machines does not
change during model execution, the shared data can be
statically allocated. However, if the collection of
machines changes during model execution, some form of
dynamic data management must be implemented by the
modeler, since GPSS/H global variables are statically
allocated at the start of model execution; i.e., they cannot
be created and destroyed during model execution.

The fork statement is an extremely handy modeling
tool. In complex modeling situations, intra-object
parallelism can be indispensable. The use of multiple
pucks offers easy shared access to object attributes
among all the pucks which belong to any given instance of

the object, while preventing access by pucks which belong
to a different instance.

3.4 SLX’s Generalized Wait Until

As units of traffic flow through a model, they are subject
to two forms of delay, scheduled delays, and state-based
delays. In SLX, state-based delays are modeled using
control variables and the wait until statement. The
keyword “control” is used as a prefix on SLX variable
declarations:

control integer count;
control boolean repair_completed;

 The “control” keyword tells the SLX compiler that at

each point at which the value of the control variable is
changed, a check must be made to see whether any pucks
in the model are currently waiting for the variable to attain
a particular value or range of values. Such waits are
described using the wait until statement:

wait until (count > 10);
wait until (repair_completed);

Compound conditions are allowed as well:

wait until (count >= 10

or repair_completed
and not repairman_busy);

SLX also supports indefinite (user-managed) waits. Three
steps are required to implement an indefinite wait. First,
the puck which is going to wait must be made accessible
to other pucks. This is usually done by placing the puck
into a set. Second, the puck executes a wait statement with
no “until” clause. Finally, at a subsequent point in
simulated time, another puck executes a reactivate
statement to reactivate the waiting puck.

Wait until expressions can include a time-based
condition.

optimistic_event_time = “some expression”

wait until (time == optimistic_event_time
 or “some other condtion”);

4 SLX AS A COMPONENT OF YOUR WORLD

Although SLX is extremely powerful and flexible, there
are situations in which it is convenient to use other
software tools in conjunction with SLX. For example, if
you have a pre-existing collection of C functions, it may
be very handy to be able to call them from SLX. The

remainder of this section provides examples of how SLX
can be integrated with the other tools in your world.

4.1 SLX’s DLL Interface

SLX has very powerful facilities for calling C/C++
functions which are contained in a DLL (dynamic link
library). To call functions in a DLL, you must supply to
SLX a function prototype which defines the arguments (if
any) of each function, the values returned (if any), and the
name of the DLL file. The SLX development environment
has a menu item which can be clicked to generate a
C/C++-compatible .h file which maps all SLX data passed
to and from DLL functions into C syntax. SLX objects
contain hidden elements which are used for error
detection, debugging and other internal bookkeeping
functions. If an SLX object is to be manipulated by a C
function, the hidden information must be taken into
account when constructing an analagous C/C++ struct
definition. Accordingly, object elements for which there
is a direct counterpart in C/C++ are described using
straightforward declarations in a generated .h file, and
hidden elements are declared as arrays of bytes with the
dimension chosen to “pad” the C/C++ struct to achieve
agreement with SLX.

When SLX detects the first call of any function in a
given DLL, it checks to see if the DLL has a function
named “connect.” If so, this function is called first, and
SLX passes it a pointer to a vector of pointers to callback
functions inside SLX. These functions can be used to
perform functions that are risky or impossible to perform
from C/C++ subsequently called DLL functions. At the
completion of execution, each DLL used is interrogated
for the existence of a “disconnect” function. Any such
functions found are called by SLX prior to SLX program
termination. This allows DLLs to perform any final
“cleanup” operations, e.g., closing open files.

4.2 SLX-Proof Interface

Wolverine Software has developed an interface between
SLX and Proof Animation (Henriksen 1998) using SLX’s
statement definition facility. Proof requires an input
stream of ASCII commands that create and destroy
objects on the screen, move them, change their colors,
etc. A small, but powerful collection of commands is used
for this purpose. SLX statements have been defined for
generating the commonly used Proof commands and
command options. The syntax of the SLX statements
matches that of the corresponding Proof commands. For
example, to generate a

 place 27 on loop

Proof command, one might write

 PA_place objectID on “loop”;

In the example shown above, “27” and “loop” are variable
components of the Proof place on command. The SLX
code supplies “27” as the value of a variable named
objectID and supplies “loop” as a string constant.

The current version of the SLX-Proof interface writes
Proof command streams to files. A DLL version of Proof
is under development. When this version is completed, the
statement definitions in the SLX-Proof interface will be
augmented to allow the transmission of commands
directly to Proof.dll without using files. This will make it
possible to run a simulation and animation concurrently.

A third party has developed an SLX package that is
capable of reading entire Proof layout files, storing them
in SLX data structures, and rewriting the layout files. Thus
geometric characteristics of layouts drawn or modified
using Proof are accessible to SLX programs. In addition,
Proof layout files can be modified by an SLX program.

4.3 SLX-Prime Interface

Prime (Wagner and Wilson 1997) is a software package
for fitting Bézier-curve-based probability distributions to
data observations. Bézier curves can be fitted to data using
a variety of automated algorithms and by visual
manipulation of the control points which define the Bézier
curve. Thus it is possible to take a fitted curve and move
the mass of the probability distribution around. For
example, one might feel that in a real system, data might
be a little more skewed to the right than collected
experimental data would suggest. Visual manipulation of
the distribution makes this easy to do, provided that the
resultant curve can be easily incorporated into a random
variate generator in a simulation package.

The output of Prime is a collection of Bézier control
points stored in a file in a straightforward ASCII format. In
cooperation with the author of Prime, Wolverine Software
developed several statement definitions which allow
direct incorporation of Prime-generated curves into SLX
models. The “Bézier_data” statement reads a Prime-
generated file (at compile time!) and deposits the defined
control points into an SLX object. This object can be
subsequently used for generating random variates from the
fitted distribution.

SLX and Prime work very well together, The initial
integration of the two packages was accomplished in
under 24 hours. After the initial integration, a highly tuned
variate generator was written in assembly language, to
achieve maximum efficiency in variate generation. This
required another day’s work.

4.4 SLX-HLA Interface

SLX’s DLL interface has been used to connect SLX
models with the run-time infrastructure (RTI) of HLA
(DoD 1997), DoD’s High Level Architecture for distrib-
uted simulations (Strassburger, Schulze, Klein, and
Henriksen 1998). Integration was accomplished by
building C++ wrapper functions which sit between SLX
and the RTI. The integration of SLX and HLA is highly
synergistic. It brings to SLX an architecture which
promises to achieve widespread adoption for distributed,
interoperable simulations. For people who know HLA and
want to develop such simulations, SLX provides a
powerful alternative to developing simulations from the
ground up in a high-level language such as C++ or ADA.

5 TEACHING SLX

The architecture of SLX has potentially profound
implications for teaching simulation. The usual approach
to teaching simulation is to “dive in” at an intermediate
level by providing an easily understood collection of
building blocks and exploring some well-motivated
examples. Students of simulation who tackle real-world
applications sooner or later reach a point at which they
have to go back and build a foundation under their
knowledge; i.e., they have to learn how things really work
(Schriber and Brunner 1997). Depending on exactly when
the foundation-building process takes place, students may
have already developed usage patterns which ignore some
of a language’s capabilities and misuse others. For
example, self-taught users of GPSS/H will almost always
favor an “active-object, passive-server” world-view, even
though the language is quite capable of expressing an
“active-server, passive object” world-view. For users of
very high-level simulation packages, especially
graphically based model-builders, the foundation-building
may never take place. Whether this is good or bad is a
matter of religion. Advocates of the very high-level
approach think this is good, while their more conservative
counterparts are appalled by the danger of doing too much
with too little knowledge.

In SLX, the number of kernel constructs which directly
support simulation is very small. Depending on what one
counts as a simulation feature, the number ranges from
roughly 8 to 12. Our experience with GPSS/H has proven
that this is a small enough number of building blocks for
beginners to readily absorb. For example, we have seen
many times that so-called “9-block GPSS/H” is easily
mastered and quite powerful.

However, even with 9-block GPSS/H, students quickly
reach a point at which foundation-building is necessary.
With SLX, a bottom-up approach is feasible. For example,
consider modeling a barbershop, a traditional introductory

one-line, single-server queuing model. In a beginner’s
model, the barbershop runs from 9:00-5:00, at which time
it summarily shuts down, ignoring the customer (if any)
who is in the barber chair at that time and ignoring
customers (if any) in the queue. In a second model, more
realistic shutdown conditions can be implemented. At
5:00 the door to the shop is closed, and the barber does
not leave until the current customer and all customers in
the queue at 5:00 have been served. In SLX, this condition
is easily expressed as a compound “wait until” condition,
e.g., “wait until (time >= 5:00 and queue empty and server
idle).” Thus, SLX’s wait until feature is well-motivated
and easily understood at a very early stage of model
building. In SLX, wait until is the foundation of all forms
of state-based events. Thus mastery of wait until yields
enormous benefits.

SLX kernel-level simulation primitives are exposed,
i.e., they can be used directly. In most simulation
software, primitives are bound into impenetrable higher-
level features. For example, in GPSS/H there are at least
five building blocks which internally utilize the equivalent
of wait until. Some of these blocks have many external
variations. Thus, students of GPSS/H must master the
external variations and learn how the underlying wait until
mechanism works. In SLX, it’s easier to learn the general
mechanism first. Wait until is both an SLX primitive and a
fundamental modeling concept. Thus, by teaching/learning
wait until, we can kill two birds with one stone.

The hierarchical architecture of SLX is mirrored by
Windows-based tools in the SLX model development /
debugging environment. Windows can be opened to
explore every aspect of puck management. Students of
SLX have the ability to see how SLX works.

5 CONCLUSIONS

SLX is a well-conceived, layered simulation system.
Users of the upper layers can ignore lower layers.
However, if their requirements are not met at a given
level, they can move down one or more levels, without
exerting extraordinary effort and without losing
protection against potentially disastrous errors.
Developers, who are used to working down among the
lower layers, have at their disposal powerful extensibility
mechanisms for building higher layers for use by
themselves or others. SLX has been used in a variety of
very large, complex applications. Its extensibility
mechanisms have been heavily exploited. SLX is easily
integrated with other simulation tools, including HLA. If
you’re teaching or learning simulation, or developing
simulations, SLX can be an invaluable component of your
world. SLX stretches the boundaries of simulation
software.

REFERENCES

Brill, J.C and D.E. Whitney. Development and Application
of an Intermodal Mass Transit Simulation with Detailed
Traffic Modeling. In Proceedings of the 1997 Winter
Simulation Conference, ed. S Andradóttir, K.J. Healy,
D.H. Withers, and B.L. Nelson. 1230-1235. Institute of
Electrical and Electronics Engineers, Piscataway, New
Jersey.

Crain, R.C. Simulation With GPSS/H. In Proceedings of
the 1998 Winter Simulation Conference , ed.
Madeiros, D.J., E. Watson, M.S. Manivannan, and J.
Carson. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Department of Defense (DoD). High Level Architecture
Interface Specification Version 1.2 (1997). Available
on-line at http://hla.dmso.mil.

Henriksen, J.O., 1998 Windows-Based Animation with
Proof. In Proceedings of the 1998 Winter Simulation
Conference, ed. Madeiros, D.J., E. Watson, M.S.
Manivannan, and J. Carson. Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

Henriksen, J.O., 1997 An Introduction to SLX. In
Proceedings of the 1997 Winter Simulation
Conference, ed. S Andradóttir, K.J. Healy, D.H.
Withers, and B.L. Nelson. 559-566. Institute of
Electrical and Electronics Engineers, Piscataway, New
Jersey.

Henriksen, J.O. 1996. An Introduction to SLX. In
Proceedings of the 1996 Winter Simulation
Conference, eds. J. Charnes, D. Moore, D. Brunner, J.
Swain. 468-475. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Henriksen, J.O., 1995. An Introduction to SLX. In
Proceedings of the 1995 Winter Simulation
Conference, ed. C. Alexopoulos. 502-509. Institute of
Electrical and Electronics Engineers, Piscataway, New
Jersey.

Schriber, T.J. and D.T. Brunner. Inside Discrete-Event
Simulation Software: How it Works and Why It
Matters. In Proceedings of the 1997 Winter
Simulation Conference, ed. S Andradóttir, K.J. Healy,
D.H. Withers, and B.L. Nelson. 14-22. Institute of
Electrical and Electronics Engineers, Piscataway, New
Jersey.

Strassburger, S., T. Schulze, U. Klein, and J.O. Henriksen.
1998. Internet-Based Simulation Using Off-the-Shelf
Simulation Tools and HLA. In Proceedings of the 1998
Winter Simulation Conference, ed. Madeiros, D.J., E.
Watson, M.S. Manivannan, and J. Carson. Institute of
Electrical and Electronics Engineers, Piscataway, New
Jersey.

AUTHOR BIOGRAPHY

JAMES O. HENRIKSEN is the president of Wolverine
Software Corporation. He was the chief developer of the
first version of GPSS/H, of Proof Animation, and of SLX.
He is a frequent contributor to the literature on simulation
and has presented many papers at the Winter Simulation
Conference. Mr. Henriksen has served as the Business
Chair and General Chair of past Winter Simulation
Conferences. He has also served on the Board of
Directors of the conference as the ACM/SIGSIM
representative.

